
Chameleon Cloud Tutorial
National Science Foundation

Program Solicitation # NSF 13-602

CISE Research Infrastructure: Mid-Scale Infrastructure - NSFCloud (CRI: NSFCloud)

Docker - Machine, Compose, and
Swarm
Because of incompatibilities, part of this tutorial uses Rackspace instead of
Chameleon. See the Machine section for details.

This tutorial will cover using Docker Machine, Compose and Swarm. Ultimately these tools are
intended to be used together but because they’re not yet mature that synthesis is limited.
We’ll discuss the limitations in more detail throughout the tutorial. We’ll instead focus on using
each tool individually and demonstrate them together in ways that currently work.

Compose
Compose simplifies the process of arranging and linking containers together. Compose lets us
specify the links and runtime configurations of containers in a single config file, rather than
having several lengthy commands to execute in the right sequence. In the first tutorial we
setup containers on 2 different hosts and linked them together to run a simple webpage. In
this tutorial we will set up a similar page that lets you post messages and lists those previously
posted. It uses 3 containers and we’ll arrange them with Compose.

Machine
Machine allows us to create Docker hosts and control them without interacting with the host
machines directly. This way you don’t have to SSH to machines running the Docker daemon to
run containers. Chameleon won’t work for this part of the tutorial because of problems with
Chameleon’s lease system. Support for Chameleon will likely happen in the future. See this
issue (https://github.com/docker/machine/issues/1461) on their GitHub. You could also use
virtual machines running on a Chameleon instance but we ran into issues installing VirtualBox
on the default Chameleon CentOS image. So for now we’re going to demo Machine with
Rackspace to give you an idea of its potential. We will be controlling everything from a
Chameleon machine however.

Swarm
Swarm is used to group multiple Docker hosts together so that containers or groups of
containers can scale across machines. We’ll also be demoing this on Rackspace because we
use Machine to setup our Swarm.

https://github.com/docker/machine/issues/1461

Prerequisites
It’s expected that you have gone through Docker Tutorial 1
(http://cloudandbigdatalab.github.io/docs/Chameleon%20Cloud%20Tutorial%20-
%20Docker%20Fundamentals.pdf) or are already familiar with its content. No more prior
knowledge is required past the first tutorial.

Steps Outline
The whole tutorial (barring problems) will probably take 45 mins to an hour. It can take a long
time to update your Chameleon instance and creating hosts with Machine can take a few
minutes per host. How long your hosts take to create depends on the type and provider.

Task Approximate Time (mins)

1 Setup 20

2 Compose 5

3 Machine 10

4 Swarm 20

Setup
We’ll be using the default Chameleon CentOS image for this tutorial.

sudo yum update -y

sudo yum install -y docker

sudo groupadd docker

sudo usermod -a -G docker cc

sudo systemctl start docker.service

We also created a user group docker and added the default cc user to it before starting the
Docker daemon. After logging out and back in you will no longer have to use sudo
with the Docker client or tools.

Then follow these instructions to install Machine
(https://docs.docker.com/machine/#installation) and Compose
(https://docs.docker.com/compose/install/). If you’re getting “Permission Denied” using
curl, run sudo -i to become root, run the commands, then exit .

If you’re going to try to use Machine with Rackspace, VM’s, or another provider follow they’re
docs to get setup. It’s fairly easy to complete the demo with VM’s on your own physical
machine.

Compose

http://cloudandbigdatalab.github.io/docs/Chameleon Cloud Tutorial - Docker Fundamentals.pdf
https://docs.docker.com/machine/#installation
https://docs.docker.com/compose/install/

With Compose you outline your container configuration and arrangement with a YAML file
name docker-compose.yml. Our docker-compose.yml
(https://github.com/cloudandbigdatalab/tutorial-cham-docker-2/blob/master/docker-
compose.yml) is on our GitHub. This lays out the 3 container composition. In our docker-
compose.yml we specify to pull out images from Docker Hub. All the resources, including the
Dockerfile, to build these images is available on our GitHub
(https://github.com/cloudandbigdatalab/tutorial-cham-docker-2). If you wanted to build the
images yourself or make modifications, download the repo then change

image: cloudandbigdatalab/server:tutorial-2

to

build: ./server

to build and use a local image. We’re assuming the Dockerfile for server is in the server folder
within the current directory. You would do the same for the page container. Note for the db
container we’re using the unmodified Postgres image off Docker Hub so their isn’t a folder for
it. Here’s a quick explanation of what’s going on with our composition.

Container
Name Apps Description

server Nginx handles http requests

page uWSGI and
Django

uWSGI connects Nginx to Django, Django generates
the html

db Postgres database for page, Django connects to Postgres

Run the Composition
docker-compose -p tutorial up -d

-p tutorial specifies our project name. Otherwise it uses the name of the current directory. If
the images had been changed and we wanted to run the updated versions we would run

docker-compose pull
docker-compose -p tutorial up -d

and the images would be pulled and our containers restarted.

Check your running containers.

docker-compose -p tutorial ps

The output should look similar to this.

Name Command State Ports
--
tutorial_db_1 /docker-entrypoint.sh postgres Up 5432/tcp
tutorial_page_1 ./startup.sh Up 3031/tcp
tutorial_server_1 nginx -g daemon off; Up 443/tcp, 0.0.0.0:80->80/tcp

https://github.com/cloudandbigdatalab/tutorial-cham-docker-2/blob/master/docker-compose.yml
https://github.com/cloudandbigdatalab/tutorial-cham-docker-2

Now if you visit the ip of your Chameleon machine in the browser you should see the page
running.

Machine
So now we’re going to do the same thing but we’re going to run our composition on a Docker
host we setup with Machine. As we outlined in the introduciton we can’t use Machine to create
hosts on Chameleon (or VM’s) so we’re using Rackspace.

Create a host
We have our account information in environment variables in this example. -d rackspace
specifies the driver as Rackspace. This will take several minutes.

docker-machine create -d rackspace docker-main

Point Docker at Remote Machine
eval "$(docker-machine env docker-main)"

Now if we run docker ps the 3 containers our gone because we’re looking at the remote host.

Run Composition on Remote Host
The commands are exactly the same as before.

Run composition.

docker-compose -p tutorial up -d

Check our running containers.

docker-compose -p tutorial ps

To see the ip of our remote machine.

docker-machine ip docker-main

Then if you visit the ip in the browser you should see the same page as before. Note that the
top left string on the page is the id of the page container. It will be different from before.

Swarm
As noted in the introduction we’ll be using Rackspace for this part of the tutorial as well. It is
possible to manually setup a Swarm cluster of Chameleon Docker hosts but we won’t be doing
that here. We’ll be using Machine which simplifies the process.

Our Composition
For this demo we can’t really use the multi-container setup we used earlier. This is for two
reasons:

1. Currently linked containers must be run on the same host. This defeats the point of
Swarm. Docker’s networking is being overhauled to allow cross-host links and the feature
is available in experimental builds. We were unable to get it working at the time of this
writing however.

2. Even with cross-host linking, there’s no automatic proxying or load balancing. So if for
example we scaled the page container to 10, that’s easy enough. But we’d also have to
configure Nginx to load balance between those containers. Or we could have a proxy
container in between the two. This is all possible but again we didn’t get it working at the
time of this writing. This is something you must build into your app design, there’s no
automatic mechanisms for this as of yet.

We’re still using an (extremely sparse) docker-compose.yml
(https://github.com/cloudandbigdatalab/tutorial-cham-docker-2/blob/master/swarm/docker-
compose.yml) for this. It consists of one service / container that runs folding@home
(https://folding.stanford.edu). We’re going to run it and scale it across a few nodes.

Generate Swarm Token
We’re generating the token and saving to an environment variable.

export SWARM_TOKEN=$(docker run swarm create)

Swarm Master
Again the account information needed for Rackspace is stored in environment variables.
Creating the machine will a few minutes.

docker-machine create -d rackspace --swarm --swarm-master \
 --swarm-discovery=token://$SWARM_TOKEN docker-swarm-master

Swarm Nodes
Here we’re using a bash loop to create 2 nodes.

for ((i = 0; i < 2; i++)); do \
 docker-machine create -d rackspace --swarm \
 --swarm-discovery=token://$SWARM_TOKEN docker-swarm-node-$i; \
done

Point Docker at Swarm
Now we’re going to point the Docker client at our Swarm cluster.

eval "$(docker-machine env --swarm docker-swarm-master)"

We can see info about the swarm with

docker info

which should output something like this.

https://github.com/cloudandbigdatalab/tutorial-cham-docker-2/blob/master/swarm/docker-compose.yml
https://folding.stanford.edu

Containers: 4
Images: 3
Storage Driver:
Role: primary
Strategy: spread
Filters: affinity, health, constraint, port, dependency
Nodes: 3
 swarm-master: 104.130.134.163:2376
 └ Containers: 2
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.014 GiB
 └ Labels: executiondriver=native-0.2, kernelversion=3.13.0-37-generic, operatingsystem=Ubuntu
14.04.1 LTS, provider=rackspace, storagedriver=aufs
 swarm-node-0: 104.130.134.175:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.014 GiB
 └ Labels: executiondriver=native-0.2, kernelversion=3.13.0-37-generic, operatingsystem=Ubuntu
14.04.1 LTS, provider=rackspace, storagedriver=aufs
 swarm-node-1: 104.130.134.76:2376
 └ Containers: 1
 └ Reserved CPUs: 0 / 1
 └ Reserved Memory: 0 B / 1.014 GiB
 └ Labels: executiondriver=native-0.2, kernelversion=3.13.0-37-generic, operatingsystem=Ubuntu
14.04.1 LTS, provider=rackspace, storagedriver=aufs
Execution Driver:
Kernel Version:
Operating System:
CPUs: 3
Total Memory: 3.041 GiB
Name:
ID:
Http Proxy:
Https Proxy:
No Proxy:

Run Composition
Note that you need to download the docker-compose.yml into a different directory from earlier
and run Compose from there.

docker-compose -p tutorial up -d

If we run

docker-compose -p tutorial ps

and look at the output we see a single worker container running.

Name Command State Ports
--
tutorial_worker_1 /bin/sh -c /etc/init.d/FAH ... Up

We can scale our worker service to 6.

docker-compose -p tutorial scale worker=6

Now if we run docker-compose -p tutorial ps again and look at the output we should see
multiple worker containers running.

Name Command State Ports
--
tutorial_worker_1 /bin/sh -c /etc/init.d/FAH ... Up
tutorial_worker_2 /bin/sh -c /etc/init.d/FAH ... Up
tutorial_worker_3 /bin/sh -c /etc/init.d/FAH ... Up
tutorial_worker_4 /bin/sh -c /etc/init.d/FAH ... Up
tutorial_worker_5 /bin/sh -c /etc/init.d/FAH ... Up
tutorial_worker_6 /bin/sh -c /etc/init.d/FAH ... Up

If we run docker ps we can look at the NAMES field and see that our containers our spread
across the 3 hosts in our cluster.

CONTAINER ID IMAGE COMMAND CREATED STATUS POR
TS NAMES
faadba6dff79 jordan0day/folding-at-home "/bin/sh -c '/etc/in About a minute ago Up About
a minute swarm-master/tutorial_worker_6
3457647206b0 jordan0day/folding-at-home "/bin/sh -c '/etc/in About a minute ago Up Abou
t a minute swarm-node-1/tutorial_worker_5
97daf03f52c2 jordan0day/folding-at-home "/bin/sh -c '/etc/in About a minute ago Up About
a minute swarm-node-0/tutorial_worker_4
fd381b18544e jordan0day/folding-at-home "/bin/sh -c '/etc/in About a minute ago Up About
a minute swarm-master/tutorial_worker_3
c2edd0380540 jordan0day/folding-at-home "/bin/sh -c '/etc/in About a minute ago Up Abou
t a minute swarm-node-1/tutorial_worker_2
8ddadc49ec72 jordan0day/folding-at-home "/bin/sh -c '/etc/in 2 minutes ago Up 2 minut
es swarm-node-0/tutorial_worker_1

Cross-Provider Swarm
You can also setup a Swarm cluster across different providers. For example we could have
launched one of our containers on Digital Ocean with:

docker-machine create -d digitalocean --swarm \
 --swarm-discovery=token://$SWARM_TOKEN docker-swarm-node-<i>;

and have a mixed cluster. In testing this worked just as well as if when they were on the same
provider.

Conclusion
Docker intends for Compose, Machine, and Swarm to work together to enable simple yet
powerful workflows. The experience of putting this tutorial together shows that’s not reality
today. However, Compose and Machine work pretty well on their own barring Machine’s
Chameleon incompatibility. The synthesis between Compose and Machine is also solid right
now. Swarm is problematic and not as useful as one might initially think. But Docker does
disclaim that these tools are not production ready yet. In the future they should work better for
multi-container apps and services.

	Chameleon Cloud Tutorial
	Docker - Machine, Compose, and Swarm
	Compose
	Machine
	Swarm
	Prerequisites
	Steps Outline
	Setup
	Compose
	Run the Composition

	Machine
	Create a host
	Point Docker at Remote Machine
	Run Composition on Remote Host

	Swarm
	Our Composition
	Generate Swarm Token
	Swarm Master
	Swarm Nodes
	Point Docker at Swarm
	Run Composition
	Cross-Provider Swarm

	Conclusion

